US 2009/0043552 Al

to it, but the subset of the original idea would probably be not
patentable anymore, unless there is an unexpected result or
synergy somewhere.

[0082] The expiration date is shown by a clock/calendar on
screen, which also affects the value of patent, as decreasing
versus time. The value of the patent can also be variable
depending on the market, e.g. demand and supply ratio, or
offers/auctions. Some of the choices are: common, no-open-
source, or both-patent-and-open-source. In Admin option,
one can change the fundamental, basic, or boundary param-
eters.

[0083] The parameters for the game can be set before, and
stored, with a file name, to be recalled later, for specific game
and corresponding pre-set parameters. The unit for scores is
dollar, point, or any other real or virtual counting system. The
bank account may have negative balance, which can become
positive again by adding the funds. Or, one can put a min.
limit of zero balance on it.

[0084] The interactive patent system described above with
reference to FIGS. 1-8 may be developed with software sys-
tems known to one skilled in the art. For example, Ruby on
Rails (“Ruby”) may be used to develop the interactive patent
system of FIGS. 1-8. Ruby is a web-application and persis-
tence framework that includes everything needed to create
database-backed web-applications according to the Model-
View-Control pattern of separation (as an example). This
pattern splits the view (also called the presentation) into
“dumb” templates that are primarily responsible for inserting
pre-built data in between HTML tags. The model contains the
“smart” domain objects (such as Account, Product, Person,
Post) that holds all the business logic and knows how to
persist themselves to a database. The controller handles the
incoming requests (such as Save New Account, Update Prod-
uct, Show Post) by manipulating the model and directing data
to the view.

[0085] In Ruby, for example, the model is handled by
what’s called an object-relational mapping layer entitled
Active Record. This layer allows you to present the data from
database rows as objects and embellish these data objects
with business logic methods. The controller and view are
handled by the Action Pack, which handles both layers by its
two parts: Action View and Action Controller. These two
layers are bundled in a single package due to their heavy
interdependence. This is unlike the relationship between the
Active Record and Action Pack that is much more separate.
Each of these packages can be used independently outside of
Ruby, as an example.

[0086] By default, Ruby will try to use Mongrel and light-
tpd web servers ifthey are installed. Otherwise, Ruby will use
the WEBrick, the webserver that ships with Ruby. When you
run script/server, Ruby will check if Mongrel exists, then
lighttpd and finally fall back to WEBrick. This ensures that
you can always get up and running quickly. Mongrel is a
Ruby-based webserver with a C-component (which requires
compilation) that is suitable for development and deployment
of Ruby applications. If Mongrel is not installed, Ruby will
look for lighttpd. It is considerably faster than Mongrel and
WEBrick and also suited for production use, but requires
additional installation and currently only works well on OS
X/Unix, as an example. And finally, if neither Mongrel nor
lighttpd are installed, Ruby will use the built-in Ruby web
server, WEBrick. WEBrick is a small Ruby web server suit-
able for development, but not for production.

Feb. 12, 2009

[0087] Itis also possible to run Ruby on any platform that
supports FCGI. Apache, LiteSpeed, IIS are just a few. More
information on FCGI may be found at http://wiki.rubyonrails.
conmV/rails/pages/FastCGI, as an example.

[0088] The Ruby on Rails code used to create the interac-
tive patent system used in FIGS. 1-8 is included as a computer
program listing appendix on CD accompanying this applica-
tion. This code is meant as one example of possible code that
may be used to carry out the present invention; Other systems
could be written in other languages or using other frame-
works. Each section of code begins with #<filepath>, wherein
<filepath> describes the file hierarchy in which the code may
exist. If the particular <filepath> is empty, a second entry
marked #directory empty” will be present in the code. These
comments are meant to permit a user to recreate not only the
code, but also the specific file and folder hierarchy used for
the example shown in FIGS. 1-8.

[0089] While the above description describes a graphical,
computer-based game, the game may be created to operate as
a text-based game as well. Such a text-based game may be
useful when a player is available only on, for example, email
or text messaging. Similarly, the game could be adapted for
use with sound prompts and vocal commands (e.g., for visu-
ally impaired users or users without access to a computer
screen or the like).

[0090] Asnoted above, not only could money (or points) be
a factor in the interactive patent system of the present inven-
tion, but time may also be considered a factor. The exchange
currency is another option for more realistic costs and fees for
different jurisdictions around the world. Time delays may be
incorporated for patent prosecution, freedom to operate deter-
minations, product design, and patent enforcement. These
time delays may be particularly useful when the interactive
patent system of the present invention is incorporated into a
virtual world. Time can also be a factor that measures skill of
the user because some users may be able to complete tasks in
the patent simulation more quickly than others, thus gaining
a competitive advantage in accumulating points (or money, or
whatever is used to represent scoring in a particular simula-
tion).

[0091] Here is a description of the administrative interface
and its key features. The administrative interface for the
patent game allows users to trace and analyze the course of a
given game. At the simplest level, it offers users a quick and
easy way to view and query the data stored in the database for
a set of games. The interface can display, for any given game,
the game type, the players involved in the game, what inno-
vations were available to the players, what patents were filed,
what licenses were granted, and what critical events took
place during the game.

[0092] The events portion of the interface is particularly
useful for users trying to follow the course of a game. When
put together in chronological order, the collection of events
for a given game forms a rough narrative describing the
players’ interactions. An event might be something like,
“Player A patented ‘ABC’,” or, “Player B licensed ‘ABC”.”
All interactions that affect the state of the game are logged as
a single-sentence event in the database, and maybe displayed
to all or some users.

[0093] The quantitative information stored in the database,
such as the number of patents and licenses created during a
game, allows users to perform statistical and numerical ana-



